
1 
 

Assessing feasibility and potential application of 
alternative technologies on urban mobility 

André Silva  
Andrecrsilva@tecnico.ulisboa.pt 

Instituto Superior Técnico, Universidade de Lisboa, Portugal 
June 2019 

 

Abstract 
Considering that most of the population lives in urban areas, the management of energy and emission 
of pollutants associated to transport sector in cities is fundamental. In this context, there is a need to 
assess the impacts associated with the usage of alternative propulsion technologies, while electric 
mobility arises as an interesting solution due to its high efficiency and zero local emissions. In this 
context, the objective of this work was to assess the energetic and environmental impacts of electric 
vehicles, based on a real-world driving data in comparison to a conventional vehicle with a simulation 
of a potential usage of an electric vehicle, having as a case study 62 drivers in the Metropolitan area of 
Lisbon. Firstly, the drivers were separated into two different groups (G1 and G2), according to its 
vehicle’s typology, and then, 27 scenarios were set, to simulate structural and behaviour constraints, 
affecting the charging opportunities, in order to evaluate their electric mobility feasibility in each 
scenario. Taking only into account the feasible drivers, it was possible to define the driver’s day-to-day 
mobility characteristics in each scenario and assess their charging  impacts , depending on the 
electricity generation mix (in this specific case, in the year 2017), at different times of the day, and at 
different periods of the year, comparing their emissions with the ones emitted by a conventional vehicle. 
Results revealed that the structural constraints were more influential to determine the feasibility. This 
one defines the scenario group’s characteristics, while behaviour constraints mainly act as a sensibility 
analysis. The feasibility is lower at the scenarios with only charging opportunities during the day, on 
average 77%, and on the scenarios with only opportunities on weekends, on average 70%, when 
comparing with those with high feasibility, and this ones only include the drivers with the lowest travelled 
distances with the lower average speed. Concerning to the CO2 emissions, the impacts were highly 
dependent on the electricity generation mix. In winter period, they were 24% lower, due to the 
contribution of renewable energies. The CO2 reduction opportunity was also more expressive at that 
period. In Winter period, the reduction peaks appeared at 9h and 19h, and showed reductions in the 
order of 82% (G1) and 87% (G2), while in Summer period, the peak only happened at 20h, and showed 
reductions in the order of 77% (G1) and 84% (G2). However, some drivers might not take advantage 
of the bigger opportunities for reduction of CO2 because in some cases, that would mean that they 
need to change their mobility characteristics and that might not be possible. 
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1. Introduction 
The transportation sector is one of the main consumers of final energy (about 33.2% in 2016 [1]) and 
its deeply connect to our society’s way of life. The sector has a key role in our economy and is 
fundamental to our logistics chain as well as for our living standard, by approaching places, peoples 
and goods. Inside this sector, the road transportation is the most energy intensive mode, and its 
contribution has been rising due to lack of investments in other type of fluvial and railway alternatives 
as well as in public transports, which lead to the private automobile domination [2]. The energy 
consumption of the sector is mainly powered by burning fossil fuels and as a result, it’s a source of 
pollutant emission gases, such as nitrogen oxides (NOx), particulate matter (PM), non-methane 
hydrocarbons (NMHCs) and sulphuric oxides (SOx). The characteristics and quantities of the emissions 
depends on several factors such as the quantities and quality of the burned fuel, the technology used 
for combustion and for the tail-pipe gases treatment (such as the 3-way catalytic converter and particle 
filters), load factor, maintenance, etc. The road mode is also the main polluter inside of cities. 
Considering that most of the population lives in urban areas, the management of energy and emission 
of pollutants associated in cities is fundamental. The EU commission has set goals that aim a 50% shift 
away from conventionally fuelled cars by 2030, phasing them out in cities by 2050 [3]. In this context, 
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the electric vehicle (EV) appears as an interesting solution, since it has a greater efficiency [4], when 
compared to the internal combustion engine vehicle (ICEV) and produces zero local emissions. This 
study aims to assess the electric mobility feasibility of a group of drivers and then, assess the impacts 
of the feasible, if they change to the electric mobility. 
 
2. Data and methods 
A generic overview of the methodological approach is presented in Fig. 1. Firstly, naturalistic driving 
data was collected using an onboard data logger (i2D device). This data was automatically sent by the 
device to a dedicated Online platform called “i2D”. From the data, was possible to define the day-by-
day mobility characterization of each driver, as well as estimate an energy consumption of a potential 
application of the electric vehicle, regarding the time distribution per power mode. From these 2 known 
factors, is possible to set a group of scenarios with different charging behaviours and assess the electric 
mobility feasibility to each driver, in every created scenario. After testing the feasibility, it’s possible to 
assess the impacts of the charges by the feasible drivers, regarding the electricity generation mix. 
 

 
Fig. 1 Generic overview of the methodological approach 

 

2.1. Data collection  
For the acquisition of the real-world driving data, an onboard data logger named “i2D” was used. This 
device connects to the vehicle’s OBD port allowing a non-invasive monitoring system installation. This 
device collects and measures and automatically transmits to the dedicated platform, with a 1 Hz 
frequency, vehicle driving data, including driving dynamics (speed, acceleration) and engine data (mass 
or air flow, engine rpm and load, throttle position, etc.) [4]. It was assumed only driver per vehicle. In 
this study, a sample of 62 drivers were monitored using the “i2D” device.  
 

Table 1 – Characterization of monitored vehicles by fuel, type and number of drivers 

Fuel  Type  Number of drivers 

Gasoline  Light duty passenger  12 

Diesel 
Light duty commercial  9 

Light duty passenger  41 
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The drivers were separated into two different groups (G1 and G2), according to its vehicle’s typology. 
Light duty passenger vehicles were grouped to G1, and Light duty commercial and pickups were 
grouped to G2. 

2.2. Data analysis 

In order to define the driver’s day-to-day mobility characterization (fixed value for each driver), its 
necessary to obtain first the hourly distribution of travelled distances on average, in each type of 
weekday (Weeks and weekends), for each driver. From the real-world driving data, an average was 
used from every trip made since the beginning of the monitorization process. In order to ensure that the 
trip was meaningful and to ensure normal driving conditions, a minimum of 200 meters travelled are 
needed to guarantee the trip validation. The average speed, even if constant for each driver, can be 
obtained in the same monitoring file as the travelled distances. Other distribution that must be taken int 
account, it’s the time distribution per power mode, which measures how much time each driver spends 
in each power mode, on a valid trip.  

 

Fig. 2. Example of an hourly distribution of travelled distances – driver 8 (left) and distribution per power mode – driver 19 
(right) 

2.3. VSP modes 

The Vehicle Specific Power (VSP) [5] methodology was presented initially as an alternative 
methodology for pollutant emissions studies and is defined as instantaneous power per unit of mass of 
the vehicle. This methodology gives a provides a simplification of the forces applied to 
the vehicle. When using this methodology, it is possible to compare vehicles with different propulsion 
technologies, based on the power required at each moment. It can be defined by:  
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𝑑𝑡 ൫𝐸௖௜௡é௧௜௖௔ ൅ 𝐸௣௢௧௘௡௖௜௔௟൯ ൅ 𝐹௥௢௟௔௠௘௡௧௢ ∙ 𝑣 ൅ 𝐹௔௘௥௢ௗ௜௡â௠௜௖௔ ∙ 𝑣

𝑚
ൌ  
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2
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𝐶ௗ ∙ 𝐴

𝑚
∙ ሺ𝑣 ൅ 𝑣௪ሻଶ ∙ 𝑣                                        ሺ1ሻ 

In this study, the approached methodology used a VSP distribution divided in 14 groups, considering 
that the first 2 modes dedicated to negative power modes. The distribution per power mode that was 
obtained by the real-world data comes represent in 82 different modes, comprehended between]-
21;60]. To be able to use this data, it was necessary group it into 14 modes, according to Table 2. 
 

Table 2. VSP binning and ranges of w/kg for each mode 

Modo VSP  W/kg  Modo VSP  W/kg 

1  VSP <‐2  8  13≤VSP<16 

2  ‐2≤ VSP<0  9  16≤VSP<19 

3  0≤VSP<1  10  19≤VSP<23 

4  1≤VSP<4  11  23≤VSP<28 

5  4≤VSP<7  12  28≤VSP<33 

6  7≤VSP<10  13  33≤VSP<39 

7  10≤VSP<13  14  VSP > 39 
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Depending on the type of vehicle (Table 1), each group was modelled by a different vehicle. G1 was 
modelled by the Nissan Leaf and G2 was modelled by the Renault Kangoo ZE. 
Table 3. Technical Specs of the modelled vehicles 

  Nissan Leaf  Renault Kangoo ZE 

Power [kW]  80  44 
Torque [Nm]  254  226 
Traction  Front  Front 
Battery capacity [kWh]  24  22 
Typo de battery  Li‐ion  Li‐ion 

Since vehicle has its own technical specs, they will have a different energy consumption per power 
mode. 

 

Fig. 3. EV Energy consumption [Wh/s] per VSP mode (left) and ICEV Fuel consumption [g/s] per VSP mode (right) 

2.4. Analysis Tool 

The developed tool, as inputs as de Average speed, the hourly distribution of travelled distances and 
the time distribution per power mode. As output, for every driver in each scenario defined, the electric 
mobility feasibility, the hourly distribution of energy available and the hourly distribution of energy 
actually charged for every type of weekday, the user profile of each of the 7 days of the week on an 
average base minute-to-minute, the energy consumption as well as according to the type of fuel of the 
original ICEV, the hourly distribution of CO2 emissions. 
 

2.4.1 Electric modelling and determination of the energy consumption 

Firstly, the type of vehicle is chosen according to Table 1. The battery capacity of the batteries of the 
Nissan Leaf and Renault Kangoo are respectively 24 kWh and 22 kWh. However, only 83.75% of the 
total capacity are available to the user. The maker reserves the surplus capacity to essential services, 
for protection of the batteries during charges and for minimizing the visible effects of batterie capacity 
decay due to the charging cycles, prolonging their lifetime [6]. Another factor to consider, defined by the 
type of vehicle, it’s the VSP modal consumption. 

Table 4. VSP modal energy consumption [Wh/s] 

 Energy consumption Wh/s 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Leaf ‐2,241  ‐0,434  0,275  2,567  3,976  5,260  6,122  7,876  9,217  10,656 12,553 14,862  17,365  20,957

Kangoo  ‐3,401  ‐0,329  0,658  2,284  3,765  4,989  6,159  7,420  8,681  10,132 12,025 14,079  16,553  22,513

In order to compute the energy consumption per travelled kilometre, the time distribution per power 
mode was used, accordingly:  

𝑊ℎ 𝑠⁄ ൌ  ෍ሺ% 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑉𝑆𝑃 𝑚𝑜𝑑𝑒ሻ௜ ൈ ሺ𝑊ℎ 𝑠⁄  𝑝𝑒𝑟 𝑉𝑆𝑃 𝑚𝑜𝑑𝑒ሻ௜                                        ሺ2ሻ

ଵସ

௜ୀଵ
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𝐸𝑛𝑒𝑟𝑔𝑦 ሾ𝑊ℎ 𝑠ሿ⁄ ൈ  
1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ሾ𝑘𝑚 ℎ⁄ ሿ
ൈ 0,001 ൈ 3600                                             ሺ3ሻ

ൌ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ሾ𝑘𝑊ℎ 𝑘𝑚⁄ ሿ 

By applying the energy consumption at the hourly distribution of travelled distances, it was possible to 
assess the amount of energy that was spent by each driver, on average, at each hour on a given type 
of day. 

2.4.2 Charging opportunities  

In order to be able to charge the battery, as in the ICEV, the EV must be stopped. Using the hourly 
distribution of travelled distance, it was possible to check if the vehicle has travelled any distance at any 
given moment. However, to be closer to the real user behaviour, it was only considered a valid 
opportunity to charge if the vehicle is stopped for at least 2 hours in a row. The opportunity that only 
takes in consideration the operation of the vehicle, was called operational charging opportunity. It must 
be considered that with this conservative approach, the number of opportunities was greatly reduced, 
but it is more intuitively closer to the real behaviour, considering the existing structures. Again, with a 
conservative approach, it was only considered the slow charge method. In Portugal, electricity is 
distributed with 200 V and 10 A. with a slow charge, only 2.2 kWh could be charged per hour. 

 

Fig. 4. Hourly distribution of travelled distance ‐ driver 8 (Left) and Hourly distribution of charging opportunities ‐ driver 8 
(Right) 

As seen in Fig. 3,even when the driver was stopped at 11h and 15h, these periods were not taken in 
account. However, the driver can only charge, if its State of charge (SOC) allows it, or if there aren’t 
any other constraints applied.  
2.4.3 Operation on the modelled vehicle 
Once the hourly distribution of used energy and the hourly distribution of charging opportunities are 
available, there are conditions to start the simulation. On this simulation, several notes were considered: 

 Continuous operation consists of 4 full weeks 
 The day-to-day mobility characterization is fixed and never change between days of the same 

type 
 Every driver starts the simulation at the same time, at the first Monday at 0h 
 Every driver starts the simulation with a SOC of 100% 

What it concerns to the charging, in order to simulate the charging tail effect, it’s not linear since its 
changes depending on its SOC. If the SOC was: 

 Between 0% and 92% - Charges normally, the same rate as defined by the grid 
 Between 92% and 95% - Charges with a factor of 0.9 
 Between 95% and 100% - Charges with a factor of 0,5 

However, this phenomenon can only be observed on the next, more detailed analysis. Since it can 
charge 2.2 kWh per hour, that means 10.95% and 11.94% at Leaf’s and Kangoo’s battery, respectively. 
These values are too big, since the charging tail effect, as modelled, can only be seen on the last 8% 
of the SOC. Over the simulation, even with the fixed mobility characteristics, the effects of a continuous 
operations started to appear. this way, a more detailed analysis was made, one per each individual day 
of the week. In order to minimize the effects of the beginning of the simulation, only the last 3 weeks 
were considered. 
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2.4.4 Scenarios and feasibility 

In order to study various conditions, 27 scenarios were set. These scenarios represent the effect of 
structural and behaviour constraints. The structural constraints were defined by the non-opportunity to 
charge at some types of weekday, or specific periods of the day. In each group of structural constraints 
were also defined 3 behaviour constraints that define the SOC from which the drive starts a charge, is 
opportunity occurs. 

Table 5. General overview of Scenarios definitions 

Period   Type of 
day 

 SOC   nº 
scenario  

Night and 
day 

Week + 
weekend 

100 1 
60 2 
30 3  

week 
100 4 
60 5 
30 6  

Weekend 
100 7 
60 8 
30 9   

Day 

Week + 
Weekend 

100 10 
60 11 
30 12  

Week 
100 13 
60 14 
30 15  

Weekend 
100 16 
60 17 
30 18   

Night 

Week + 
Weekend 

100 19 
60 20 
30 21  

Week 
100 22 
60 23 
30 24  

Weekend 
100 25 
60 26 
30 27 

 

The beginning of the period “daytime” was defined as 8h and lasts until 19h. In the same way, night-
time starts at 20h until 7h. The feasibility analysis was made considering the SOC of each driver, in 
each scenario. if during the operation period, a driver’s SOC reaches 0, he Is not feasible to the electric 
mobility. After this assessment, it was possible to compute the hourly distribution of charged energy for 
every scenario, only taking in consideration the feasible drivers.  

2.4.5 CO2 emissions 

To compute CO2 emissions, the same methodology was used as to one to compute the energy 
consumption and energy spent. 

Table 6. VSP modal fuel consumption 

 Fuel consumption g/s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Diesel 0,046  0,131  0,147  0,473  0,648  0,817 1,073 1,198 1,581 1,868 2,349 2,695  3,133  3,608

Gasoline 
0,130  0,153  0,167  0,471  0,627  0,899 1,069 1,306 1,409 1,588 1,810 1,930  2,015  2,047
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𝑊ℎ 𝑠⁄ ൌ  ෍ሺ% 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑉𝑆𝑃 𝑚𝑜𝑑𝑒ሻ௜ ൈ ሺ𝑔 𝑠⁄  𝑝𝑒𝑟 𝑉𝑆𝑃 𝑚𝑜𝑑𝑒 ሻ௜                                                                                               ሺ4ሻ

ଵସ

௜ୀଵ

 

𝐹𝑢𝑒𝑙 ሾ𝑔 𝑠ሿ⁄ ൈ  
1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦ሾ𝑘𝑚 ℎ⁄ ሿ
ൈ 0,001 ൈ 3600 ൌ 𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ሾ𝑔 𝑘𝑚⁄ ሿ                         ሺ5ሻ 

 
Table 7. CO2 emission factors for different fuels  

Gasoline Diesel 
CO2 Emission Factor 

[g CO2/km]
3,17 3,19 

 
 
In order to compute the CO2 emissions, the factors of Table 7 were used. By applying CO2 emission 
factor to the hourly distribution of travelled distance, it was possible to assess the CO2 emissions for 
every ICEV, at any given moment.  
2.4.5 Electrical Grid 
The impacts of battery charging are directly connected to the electric grid characteristics. Due to politics, 
demand, and availability (in case of renewables), the energy generation mix is flexible, and so are its 
impacts. 

 
Fig. 5. Hourly distribution of CO2 emission factor ‐ Electricity, Winter and Summer 

3. Results and discussion 
After the feasibility assessment results revealed that, the feasibility is lower at the scenarios with only 
charging opportunities during the day, on average 77%, and on the scenarios with only opportunities 
on weekends, on average 70%, and when comparing with those with high feasibility, and this ones 
only include the drivers with the lowest travelled distances with the lower average speed (Fig. 6,Fig. 7  

Fig. 8) 
 

 
Fig. 6. Travelled distance by the feasible in different scenarios 

 

Fig. 7. Feasibility and travelled distance 
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Fig. 8. Average speed 

 

Fig. 9‐ Energy charged and opportunity to charge 

The scenarios with charge opportunities only at weekends [25,26 e 27], as well as the scenarios 
[13,14], are also characterized by using more percentage of energy opportunities. On average, 
scenarios [25,26 e 27] used 38.8% and scenarios [13,14], used 31,5% of total available energy 
available (Fig. 9) 

 

Fig. 10. Polar evolution (G1) 

In order to make a comparison between scenarios, it’s possible to use polar evolution diagrams. Fig. 
10 . These polar evolutions were normalized to its average. As observed, structural constraints were 
more influential to determine the feasibility. This one defines the scenario group’s characteristics, 
while behaviour constraints mainly act as a sensibility analysis. 
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Fig. 11. CO2 emissions comparison, between ICEV and EV (G1) 

As shown in Fig. 11, the EV’s CO2 emissions are much smaller than the ICEV, however in winter the 

reduction is even greater. In Winter, G1 showed a reduction of 80.5% on average, and 74.4% in 
summer. 

 

Fig. 12. Example of hourly CO2 reduction opportunity‐ G1 

As Fig. 5 and Fig. 12 represents, In Winter, there was 2 peaks at 9h and 19h and showed reductions 
in the order of 82%, while in Summer period, the peak only happened at 20h, and showed reductions 
in the order of 77%  

4. Conclusions and further work 
The main objectives of this work consisted in characterizing the driving profiles and simulate the 
operation in an EV, based on real-world driving data, and then assess the feasibility as well as energy 
and environmental impacts. Concerning the feasibility, results revealed that the structural constraints 
were more influential to determine the feasibility. This one defines the scenario group’s characteristics, 
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while behaviour constraints mainly act as a sensibility analysis. The feasibility is lower at the scenarios 
with only charging opportunities during the day, on average 77%, and on the scenarios with only 
opportunities on weekends, on average 70%, when comparing with those with higher feasibility, and 
this ones only include the drivers with the lowest travelled distances with the lower average speed. The 
scenarios with charge opportunities only at weekends [25,26 e 27], as well as the scenarios [13,14], 
are also characterized by using more percentage of energy opportunities. On average, scenarios [25,26 
e 27] used 38.8% and scenarios [13,14], used 31,5% of total available energy available. Regarding the 
scenarios that only charges at weekends, the feasibility greatly depends on the operational 
opportunities to charge, because the energy charged at this period must be enough for all week of 
operation. It’s also important to say that the analysis was made using the original versions of the Nissan 
Leaf and Renault Kango Ze. Newer versions present better efficiencies and better batteries with bigger 
capacities. If the new versions were used in this methodology, a considerable larger percentage of 
drivers would be considered feasible. In this analysis, rigid scenarios, with no changes between days 
of the same type, were considered, which doesn’t happen in real-world. In this case, in the long term, 
the condition that really defines de feasibility it’s not the capacity of the battery, but the quantity of 
energy that is charged weekly. If the effective energy charging opportunities are not at least equal to 
the energy consumed, the SOC will become energy deficient. Bigger the deficiency, sooner the need 
to break the operation characteristics to be able to charge. If not, the driver might lose its feasibility 
qualification. When considering the impacts, results reveal that they are very dependent on the time 
and on the year period, because of the flexibility of the electricity generation mix. It’s also important to 
say that this analysis has taken in consideration the electricity generation mix related to the year 2017. 
Since the characteristics of production are constantly changing, this year might not be representative. 
Regarding de CO2 emission factor, results evidenced that during the daily scenarios, this factor were 
usually lower (7.9% during Winter and 3.6% during summer). This phenomenon happens because the 
definition of daily period starts at 8h. Therefore, there is a charging peak at this hour and at the same 
time, the electricity generation mix has a high contribution of renewable energies, thus a very low CO2 
emission factor. Was also possible to verify that CO2 emissions are much lower in Winter period, when 
compared to the Summer (24%) due to the high contribution of renewable in the generation mix. 
Therefore, the reduction opportunities for CO2 emissions due to the EV battery charges, when 
compared to ICEV were also bigger. Each group of analysis showed different values regarding 
reduction of emission. In Winter, G1 showed a reduction of 80.5% on average, and 74.4% in summer, 
while G2, 86% and 81.6% in Winter and Summer respectively. The opportunities for reduction of 
emissions are deeply related with the factor of emission of the electrical grid. In Winter, there was 2 
peaks at 9h and 19h and showed reductions in the order of 82% (G1) and 87% (G2), while in Summer 
period, the peak only happened at 20h, and showed reductions in the order of 77% (G1) and 84% (G2). 
However, some drivers might not take advantage of the bigger opportunities for reduction of CO2 
because in some cases, that would mean that they need to change their mobility characteristics and 
that might not be possible.  

Future work may include monitoring a bigger sample of drivers for a longer period, apply road level 
factor, eco-driving effects and study different types of charging methods.  
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